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Abstract. Wave propagation governed by reaction-diffusion equations in homoge-
neous media has been studied extensively, and initiation and propagation are well
understood in scalar equations such as Fisher’s equation and the bistable equation.
However, in many biological applications the medium is inhomogeneous, and in one
space dimension a typical model is a series of cells, within each of which the dynamics
obey a reaction-diffusion equation, and which are coupled by reaction-free gap junc-
tions. If the cell and gap sizes scale correctly such systems can be homogenized and
the lowest order equation is the equation for a homogeneous medium [11]. However
this usually cannot be done, as evidenced by the fact that such averaged equations
cannot predict a finite range of propagation in an excitable system; once a wave is
fully developed it propagates indefinitely. However, recent experimental results on
calcium waves in numerous systems show that waves propagate though a fixed num-
ber of cells and then stop. In this paper we show how this can be understood within
the framework of a very simple model for excitable systems.

1. Introduction. Until recently, astrocytes were considered passive bystanders in
the brain, but it is now known that electrical, mechanical, and chemical stimuli
can trigger complex intracellular calcium (Ca+2

i ) responses in these cells, both
within a cell and on a scale of many cell lengths. Aggregates of cultured astrocytes
can propagate waves that cross cell boundaries without decrement or delay, involve
hundreds of cells, and last seconds to minutes [18]. Often waves originate at several
points in a cell, each characterized by its own frequency and amplitude [19, 20],
and often the waves from different loci interact and evolve into rotating spirals that
involve many cells [4]. Ca+2

i waves also arise in cardiac tissue, and it has been
shown that spatial inhomogeneity in the release sites can block waves that would
propagate in a spatially-uniform tissue [17].

Intercellular calcium waves require some form of cell-to-cell communication, and
two major pathways have been identified: direct diffusion of inositol 1,4,5- trisphos-
phate (IP3), and perhaps calcium, via gap junctions [3], and indirect communication
via a secreted messenger released by stimulated cells [6]. Intercellular propagation
involves gap junctions, because propagation is inhibited by gap junction blockers
[5]. Communication is probably via diffusion of IP3 through gap junctions, which
generates Ca2+ release in one cell after another. It is not known whether these
waves are regenerative, but it is often assumed that they are not because the waves
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only propagate a short distance and stop [3]. Models based on passive diffusion of
IP3, IP3-stimulated release of calcium, and communication via gap junctions have
been developed [16], but the problem of predicting the extent of propagation re-
mains unresolved. Our objective here is to analyze in detail a simplified model that
can suggest an explanation for the finite range of propagation.

2. Statement of the problem. We consider the initial value problem for a bistable
reaction-diffusion equation in a one-dimensional, non-homogeneous environment.
Specifically, let P denote the union of a finite number of disjoint finite open inter-
vals on the real line, and let A denote the interior of the complement of P. The
differential equation is

vt = D(x)vxx + F (x, v),
where

D(x) =
{

Da for x ∈ A
Dp for x ∈ P

,

and

F (x, v) =
{

f(v) for x ∈ A
0 for x ∈ P

.

For the initial value problem we impose the initial condition

v(·, 0) = v0 in R,

and the matching conditions

v(·, t) ∈ C(R) for all t ≥ 0

Dp lim
x→x0
x∈P

vx(x, t) = Da lim
x→x0
x∈A

vx(x, t) for all t ≥ 0 and x0 ∈ A ∩P.

We will refer to A as the active region and P as the passive region. The individual
intervals in P will be called gaps.

This initial value problem has been studied for various choices of the reaction
term f(v). In the case P = ∅, Rinzel & Keller [13] deal with McKean’s piecewise
linear reaction term [8]

f(v) = λ {H(v − a)− v} , (1)
where H is the Heaviside function, λ a positive parameter, and a ∈ (0, 1/2) is
the threshold parameter. They show that there is a traveling change-of state wave
connecting the equilibria at v ≡ 0 and v ≡ 1. This solution is unique (up to
translation) and (linearly) stable. When P consists of a single interval, Snyed &
Sherratt [15] show that if the gap is sufficiently large then there exist two monotone
standing wave solutions, one stable and the other unstable. The stable solution
can block transmission since for suitable initial data v0 the solution to the initial
value problem approaches the stable standing wave rather than either of the stable
equilibria v ≡ 0 or v ≡ 1. Lewis & Keener [7] also find stable and unstable monotone
standing wave solutions in the 1-gap problem for Nagumo’s equation, i.e., with the
smooth reaction term f(v) = v(1 − v)(v − a). In addition, they show that the
standing waves emerge via a saddle-node bifurcation. Yang et al. [21] investigate
Nagumo’s equation numerically in the case in which P contains more than one
interval. In particular, they are interested in cases where the gaps are of different
lengths and develop criteria for transmission and non-transmission when there are
two or three gaps. In this paper we study the case of N gaps of equal length for
the piecewise linear reaction term (1).
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By a suitable rescaling of time and space we can eliminate all but two of the
parameters and rewrite the initial value problem in the form

ut =
{

uxx + H(u− a)− u for (x, t) ∈ A×R+

Duxx for (x, t) ∈ P×R+ , (2)

u(·, 0) = u0 in R,
u(·, t), ux(·, t) ∈ C(R) for all t ≥ 0,

where D = Da/Dp.
Since the diffusivity and the reaction term in (2) are both discontinuous, the

existence and uniqueness of solutions to the initial value problem is not obvious.
However, by adapting the methods of Pauwelussen [12], who deals with discontin-
uous diffusivity, and of McKean [9], who deals with a non-smooth reaction term,
one can prove the desired result. We omit the rather technical details and simply
assume the result. Moreover, the discontinuity in the diffusivity does not play an
essential role in our considerations, so to simplify the notation we will assume that
D = 1 hereafter.

We consider the general case of N gaps of equal length γ separated by N−1 active
intervals each of length β (Figure 1). We seek criteria for deciding when an initial
datum u0 for the initial value problem which is above threshold to the left of the
first gap will generate a solution which ultimately fails to rise above threshold in one
of the subsequent gaps or active regions. For this purpose we construct a sequence
of monotone steady state (standing wave) solutions which cross threshold in one of
the gaps or active regions. In particular, we construct standing waves which cross
threshold in either the M th gap or active interval for each M = 1, ..., N . In general,
there do not exist standing wave solutions at all points in the (γ, β)-plane, so we
will characterize the regions of existence for each choice of M and N . As we will
see, these waves emerge in stable/unstable pairs. Waves which cross threshold in a
gap are shown to be stable, while those which cross in an active region are unstable.
These steady state solutions block transmission. For example, if the initial datum
lies between two standing waves, one crossing threshold in the M th active region
and the other crossing in the (M +1)st with M < N then the solution to the initial
value problem will asymptotically approach a standing wave which crosses threshold
in the (M +1)st gap. Roughly speaking, the space of initial functions is partitioned
into three classes: one which generates solutions which ultimately die out, one which
generates solutions which approach a traveling wave in the terminal active region,
and one which generates solutions which approach non-trivial stationary patterns
which are ultimately below threshold in the terminal active region.

G A G A G A....................1 2 2 N N1 ................... A
0

y
0

x
1

y x y2 21
y x

N−1 N

Figure 1. The geometry and labeling of the system.

Steady state solutions to (2) are solutions to the ordinary differential equation

u′′ + I(x){H(u− a)− u} = 0, (3)
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where

I(x) =
{

0 if x ∈ P
1 if x ∈ A

.

In the phase plane, i.e., the (u, u′)-plane, there are rest points at O = (0, 0) and
P = (1, 0), both of which are saddles. We assume throughout that a ∈ (0, 1/2).
It is easy to show using first integrals that the stable and unstable manifolds of O
coincide and form a homoclinic loop in the right half plane. The part of the loop
in the fourth quadrant is given by

Σ1 : u′ = −u for 0 ≤ u ≤ a

Σ2 : u′ = −
√

u2 − 2u + 2a for u > a.

The branch in the fourth quadrant of the unstable manifold associated to P is given
by

Σ3 : u′ = u− 1 for 0 ≤ u ≤ 1.

These manifolds are shown in Figure 2. The steady state solutions we seek are
monotone standing wave solutions which correspond in the phase plane to hetero-
clinic orbits from P to O.

Figure 2. The phase plane for the two-gap problem with γ > γ∗ ≡
a−1 − 2.

Although our construction of the standing wave solutions is analytic, in the case
of two gaps it is possible to give a rather simple geometric construction which has
the virtue of clearly displaying the admissible relationships between the lengths
γ and β. We carry this out in Section 2. In Section 3 we turn to the general
case N ≥ 1 and carry out the formal construction of the standing wave solutions
which cross the threshold value in the M th gap for M = 1, ..., N . We make this
construction rigorous in Section 4 by imposing the necessary constraints. We also
explore the consequences of these constraints in determining the bifurcation curves
and delineating the (γ, β) regions for the existence of standing waves. In Section 5
we investigate monotonicity properties with respect to M and N of the initial slope
of a monotone standing wave solution which crosses threshold in the M th gap of
an N gap configuration. Standing waves which cross threshold in active regions are
constructed in Section 6. The stability and instability of the various standing waves
is studied in Section 7 using an extension of the comparison result of Pauwelussen
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[12] and the convergence results of Aronson & Weinberger [1, 2]. In that Section
we also discuss the pattern formation induced by the presence of gaps. Finally, in
Section 8 we summarize our results and discuss various possible extensions.

3. The geometric construction for the two-gap problem. We consider the
problem of constructing monotone standing waves in the presence of two gaps. We
seek a C1 solution to

u′′ + H(u− a)− u = 0 for x ∈ (−∞, 0) ∪ (γ, γ + β) ∪ (2γ + β,∞) (4)

and
u′′ = 0 on (0, γ) ∪ (γ + β, 2γ + β). (5)

Since standing waves do not exist for all points in the (γ, β)-plane we proceed by
fixing the gap length γ and determining the admissible values of the active region
length β and the slope −u∗ at x = 0.

To begin with we fix

γ > γ∗ ≡ 1
a
− 2. (6)

Integrating (4) with a given value of u′ corresponds to traversing a horizontal seg-
ment of length γ |u′| in the phase plane. The curves Γ1, Γ2 and Γ3 in Figure 2 show
the locus of phase points at a distance γ |u′| from Σ1,Σ2, and Σ3 respectively. Thus
each point on Γj is the endpoint of a trajectory of (4) whose other endpoint lies on
Σj for j = 1, 2, 3 . The heteroclinic orbits we seek are constructed from segments
of the manifolds Σ1, Σ2 and Σ3, horizontal segments which are trajectories of (4),
and curved segments which are trajectories of (4). These curved segments join Γ3

to Γ1 or to Γ2, and determine the admissible values of β corresponding to the given
value of γ.

The phase points

Qj ≡
{

Γ3 ∩ Σj for j = 1, 2
Γ3 ∩ Γj−2 for j = 3, 4

and
Qa ≡ Γ3 ∩ {u = a}

play a crucial role in determining the admissible values of β and u∗. Define the
numbers uj for j = 1, .., 4 by

Qj ≡ (1− (1 + γ)uj ,−uj)

and
ua ≡ 1− a

1 + γ
.

Then
a > u1 > ua > u2 > u3 > u4 > 0.

For 0 < u∗ < u4, where (1 − u∗,−u∗) ∈ Σ3, there are two families of heteroclinic
orbits. One of these consists of orbits which cross threshold in the terminal active
region, e.g., PABCDEO in Figure 2. The curved segment B̂C represents a tra-
jectory of (4) and determines an admissible active region length β. As u∗ ↘ 0, B̂C
approaches Σ3 and β ↗∞. As u∗ ↗ u4, B̂C collapses to the point Q4 and β ↘ 0.
There are no heteroclinic orbits which cross threshold in the terminal active region
for u ≥ u4.

Heteroclinic orbits in the other family cross threshold in the second gap. They
exist for 0 < u∗ < u4 and persist beyond u∗ = u4 for u4 ≤ u∗ < u3. An example is
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PABFGO in Figure 2. For these orbits the length β is determined by the curved
segment B̂F with β ↘ 0 as u∗ ↗ u3 and β ↗ ∞ as u∗ ↘ 0. The leftmost two
curves in Figure 3 show β as a function of u∗ for these two families of heteroclinic
orbits.

Figure 3. The (u, β)-plane for the two-gap problem with threshold
a = 0.45 and gap length γ = 0.3 > γ∗ = 2/9. Here −u is the initial
slope and β is the length of the intervals in the active region. For points
(γ, β) on the curve labeled a (c) the corresponding standing wave solution
crosses threshold in the active region A2 (A1). For points (γ, β) on the
curve labeled b (d) the corresponding standing wave solution crosses
threshold in the gap G2 (G1). The point labeled P is the minimum point

(ua, βa).

For u2 < u∗ < ua there is a family of heteroclinic orbits which cross threshold
in the active region A1, e.g., PHIJKLO in Figure 2. The admissible values of
β are determined by the trajectory ÎJK of (4) with β ↗ ∞ as u∗ ↘ u2. For
ua < u∗ < u1 there is a family of heteroclinic orbits which cross threshold in the
first gap, e.g., PMNKLO. Here the admissible values of β are determined by
the trajectory N̂K of (4) with β ↗ ∞ as u∗ ↗ u1. When u∗ → a the two
families discussed here coalesce and there is a minimal value of β determined by the
trajectory ĴK. The two rightmost curves in Figure 3 show β as a function of u∗ for
these two families. Note that the curves intersect at the point (u∗, β) = (ua, βa),
where βa is the minimal allowable active region length for the given gap length γ.
The point (ua, βa) is a bifurcation point in the sense that there are two distinct
solution branches in its neighborhood.

When γ = γ∗ the intersection of Γ3 and Σ1 ∪ Σ2 is the single point (a,−a),
while for γ < γ∗ the intersection is empty. Thus there are no monotone standing
waves which cross threshold in either the terminal active region or the second gap
for γ ≤ γ∗. However if

1
2
γ∗ < γ < γ∗

then Γ1 and Γ2 intersect the line u′ = −a in a point C (cf. Figure 4) whose u-
coordinate lies in the interval (a/2, 1− a). The trajectory of (4) which starts at C
intersects Γ3 in a point

B ≡ (1− (1 + γ)ub,−ub)

where ub ∈ (0, a) with ub ↘ 0 as γ → γ∗ and ub ↗ a as γ → 1
2
γ∗.
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Figure 4. The phase plane for the two-gap problem with γ∗
2

< γ < γ∗.

For ub < u∗ < u4 there is a family of heteroclinic orbits which cross threshold
in the terminal active region, e.g., PEFGHDO in Figure 4. For these orbits the
length β of the active region is determined by the curve F̂G with β ↘ 0 as u∗ ↗ u4.
There are no heteroclinic orbits which cross threshold in the terminal active region
for u∗ ≥ u4.

For u3 < u∗ < ub there is a family of heteroclinic orbits which cross threshold in
the second gap, e.g., PEFIJO in Figure 4. For these trajectories the length β of
the active region is determined by the curve F̂I with β ↘ 0 as u∗ ↘ u3. There are
no heteroclinic orbits crossing threshold in the second gap for u∗ ≤ u3.

The two families coincide at u∗ = ub (PABCDO in Figure 4) and there is a
maximal value of β = βb (determined by the curve B̂C) . Figure 5 shows β as a
function of u∗ for these two families. These curves intersect in a bifurcation point
at (u∗, β) = (ub, βb).

Figure 5. The (u, β)-plane for the two-gap problem with threshold
a = 0.45 and gap length γ = 0.15 ∈ ( 1

2
γ∗, γ∗). Here −u is the initial

slope and β is the length of the intervals in the active region. For points
(γ, β) on the curve labeled a (b) the corresponding standing wave solution
crosses threshold in the active region A2 (the gap G2). The point labeled
P is the maximum point (ub, βb).
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The left-hand curve in Figure 6 shows the loci of the maxima β = βb(γ), and the
right-hand curve shows the loci of the minima β = βa(γ) in the (γ, β)-plane. These
curves are bifurcation curves in the sense that there exist two distinct solution
branches for (γ, β)-values in the region to the right of them. The constructions
described above establish the qualitative features of the graphs in Figures 3, 5,
and 6. However, the figures actually show the results of computations which are
described in Sections 4 and 6.

Figure 6. The (γ, β)-plane for the two-gap problem with threshold
a = 0.45. The curve labeled a (b) is the locus of maximum (minimum)
active region length β = βb(γ) (β = βa(γ)).

4. Solutions Which Cross Threshold in a Gap: Formal Construction. We
consider a configuration with N gaps each of length γ separated by N − 1 active
regions each of length β. The gaps are given by

Gj = (yj−1, xj) for j = 1, ..., N

and the active regions are given by

A0 = (−∞, y0), Aj = (xj , yj) for j = 1, ..., N − 1, and AN = (xN ,∞),

where
xj = jγ + (j − 1)β and yj = j(γ + β)

(cf. Figure 1). We will give the formal construction of a monotone standing wave
solution which crosses threshold in the gap GM , where 1 ≤ M ≤ N.

Let

Uj =
(

u(xj)
u′(xj)

)
and Vj =

(
u(yj)
u′(yj)

)
.

In the gap Gj we integrate
u′′ = 0

with initial value Vj−1 to obtain
(

u(x)
u′(x)

)
= P (x− yj−1)Vj−1,

where

P (z) =
(

1 z
0 1

)
.
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In particular, at the end of Gj we have

Uj = PVj−1,

where

P = P (γ) =
(

1 γ
0 1

)
.

If j < M we are above threshold so that in Aj we integrate

u′′ − u + 1 = 0

with initial value Uj to obtain(
u(x)
u′(x)

)
− ε1 = A(x− xj)(Uj − ε1),

where

A(z) =
(

cosh z sinh z
sinh z cosh z

)
and ε1 =

(
1
0

)
.

Thus at the end of Aj we have

Vj − ε1 = A(PVj−1 − ε1), (7)

where

A = A(β) =
(

cosh β sinhβ
sinhβ cosh β

)
.

For the first gap the left-hand endpoint must lie on the unstable manifold of the
rest point P = (1, 0) in A0. Write

V0 =
(

1− u∗

−u∗

)
.

Then
U1 = PV0 = ε1 − u∗Pε,

where

ε =
(

1
1

)
,

and
V1 − ε1 = −u∗APε. (8)

In view of (8), iteration of (7) yields

VM−1 − ε1 = −u∗(AP )M−1ε,

and crossing GM we find

UM−1 = ε1 − u∗P (AP )M−1ε

since Pε1 = ε1.
Since we assume that the threshold u = a is crossed in GM the Heaviside function

in (3) is zero, we proceed by integrating

u′′ − u = 0

across AM to obtain
VM = Aε1 − u∗(AP )M ε

and
UM+1 = PAε1 − u∗P (AP )M ε.

Continuing in this manner successively applying A and P yields

UN = (PA)N−M ε1 − u∗P (AP )N−1ε
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at the end of the final gap GN . The stable manifold of O is given by u + u′ = 0.
Since UN must lie on this manifold we have

0 = εT UN = εT (PA)N−M ε1 − u∗εT P (AP )N−1ε

so that

u∗ = u∗MN =
εT (PA)N−M ε1
εT P (AP )N−1ε

. (9)

Note that (9) can also be written in the form

u∗MN =
εT (PA)N−M ε1

εT (PA)k−1P (AP )N−kε
for k = 1, ..., N. (10)

To simplify (10), we write

(AP )kε=
(

fk

gk

)
, (11)

where

AP =
(

cosh(β) sinh(β) + γ cosh(β)
sinh(β) cosh(β) + γ sinh(β)

)
.

Note that f0 = g0 = 1, and that fk and gk are positive for all integers k. Moreover,

fk+1 > fk and gk+1 > gk. (12)

Since

(PA)k =
(

0 1
1 0

) (
(AP )k

)T
(

0 1
1 0

)

it follows that

εT (PA)k =
(

gk fk

)
. (13)

Thus we can rewrite (10) as

u∗MN =
gN−M

gk−1(fN−k + γgN−k) + fk−1gN−k
for k = 1, ..., N. (14)

Note that (14) implies that

gk−1(fN−k + γgN−k) + fk−1gN−k = gj−1(fN−j + γgN−j) + fj−1gN−j for all k, j.
(15)

Once u∗ is known, the monotone standing wave is uniquely determined, at least
formally. In particular

(
u
u′

)
=





ε1 − u∗P (x− yk−1)(AP )k−1ε for x ∈ Gk, k ≤ M

ε1 − u∗A(x− xk)P (AP )k−1ε for x ∈ Ak, k ≤ M − 1

A(x− xk){(PA)k−M ε− u∗P (AP )k−1ε} for x ∈ Ak, M ≤ k ≤ N − 1

P (x− xk){A(PA)k−M ε− u∗(AP )kε} for x ∈ Gk,M ≤ k ≤ N

.

(16)
Note that formally the function defined by (16) is a steady state solution on [0, xN ]
which crosses threshold in the Mth gap. However, it is not a standing wave unless
u∗ = u∗MN .
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5. Constraints. The derivation of the formulae (14) for u∗MN given in the previous
section is purely formal. Although it is assumed that the threshold is crossed in the
M th gap, u∗MN as given by (14) is in fact independent of the value of the threshold
parameter a. Hence there is no guarantee that this crossing actually occurs for any
preassigned value of a. To ensure a crossing we must apply various constrains which
depend on the actual value of a.

In the gap GM the solution starts at the phase point (1−u∗MNfM−1,−u∗MNgM−1).
Since this point must not lie below threshold we must require that 1−u∗MNfM−1 ≥ a,
i.e.,

u∗MN ≤ 1− a

fM−1
.

Using (13) with L = N −M + 1 this is equivalent to

XMN (γ, β) ≡ (
1
a
− 1)gM−1(fN−M + γgN−M )− fM−1gN−M ≥ 0. (17)

Equality in (17) occurs exactly when the solution crosses threshold at the beginning
of the GM or, equivalently, at the end of the AM−1. Moreover, the phase point
(1−u∗MNfM−1,−u∗MNgM−1) must lie above the line u′ = −a. Hence we must have
−u∗MNgM > −a or

u∗MN <
a

gM−1
.

An equivalent form of this condition is

YMN (γ, β) ≡ gN−M (fM−1 + γgM−1) + gM−1(fN−M − 1
a
gN−M ) ≥ 0. (18)

In the gap GM the solution ends at the phase point

(1− u∗MN (fM−1 + γgM−1),−u∗MNgM−1).

This point must lie on or to the left of u = a and either on the stable manifold of
0 if M = N or to the right of it if M < N . Thus

u∗MNgM−1 ≤ 1− u∗MN (fM−1 + γgM−1) ≤ a (19)

with equality on the left if and only if M = N.
The left hand inequality in (19) is always satisfied. To see this observe that, in

view of (14) with k = N −M + 1, this inequality is equivalent to

gM−1(fN−M+1 − gN−M+1) ≥ 0.

Since gk > 0 it suffices to prove that

fk − gk > 0 for all integers k ≥ 1. (20)

We do this by induction. For k = 1

f1 − g1 = γ(coshβ − sinhβ) > 0.

Write

(AP )k =
(

m11 m12

m21 m22

)
,

where the mij > 0. Then fk = m11 + m12, gk = m21 + m22, and we assume that
fk − gk > 0. Now

(AP )k+1 =(
m11 coshβ + m21(sinhβ + γ coshβ) m12 cosh β + m22(sinh β + γ cosh β)
m11 sinhβ + m22(coshβ + γ sinhβ) m12 sinh β + m22(coshβ + γ sinh β)

)
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so that
fk+1 − gk+1 = (fk − gk + γgk) (cosh β − sinhβ) > 0,

which proves the assertion.
The right hand inequality in (19) is equivalent to

u∗MN >
1− a

fM−1 + γgM−1

or

ZMN (γ, β) ≡ gN−M (fM−1 + γgM−1) + (1− 1
a
)fN−MgM−1 ≥ 0. (21)

Note that equality in (21) occurs exactly when the solution crosses threshold at the
end of GM or equivalently at the beginning of AM .

For the existence of a monotone standing wave solution which crosses threshold
in the M th gap it is necessary and sufficient that (γ, β) be such that (17), (18), and
(21) are simultaneously satisfied. In view of (18) and (21) we have

YMN = ZMN +
1
a
gM−1(fN−M − gN−M ).

Since YNN = 0 and ZMN = 0 coincide, it follows from (20) that

YMN ≥ ZMN with equality only for M = N.

Therefore YMN ≥ 0 whenever ZMN ≥ 0, and in particular, (18) is automatically
satisfied whenever (21) holds. Thus the condition (18) is redundant. The region
in the (γ, β)−plane where (17) and (21) both hold is delineated by the sets where
XMN (γ, β) and ZNM (γ, β) vanish. The coincidence of YNN = 0 and ZNN = 0
means that the phase point at the end of the N th gap has coordinates (a,−a).

In the two-gap case discussed in Section 2, the curves β = βa(γ) and β = βb(γ)
in Figure 6 are, respectively, the curves Z12 = 0 and Z22 = 0. Figure 7 shows the
curves XM5 = 0 and ZM5 = 0 for two different values of the threshold parameter a
and for various values of M ∈ {1, ..., 5}. As we noted above, the curves XMN = 0
and ZMN = 0 describe the loci of points in the (γ, β)-plane where the crossing of
the threshold occurs at the intersection of an active and a passive region. As in
the two-gap case, we expect these points to be bifurcation points where branches of
solutions crossing in an active and in a passive region meet. This will be discussed
in Section 6.

We investigate the sets where XMN (γ, β) = 0 and ZNM (γ, β) = 0. Since

A(β)P (0) =
(

cosh β sinhβ
sinhβ cosh β

)

we have (
fk(0, β)
gk(0, β)

)
= (cosh β + sinh β)ke.

Therefore
XMN (0, β) = γ∗(cosh β + sinh β)N−1 > 0 (22)

and
ZNM (0, β) = −γ∗(coshβ + sinh β)N−1 < 0, (23)

where

γ∗ =
1
a
− 2.
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Figure 7. (a) The (γ, β)-plane for the five-gap problem with threshold
a = 0.45. The curve labeled a is X45 = 0, b is X55 = 0, c is Z15 = 0, d
is Z25 = 0, e is Z35 = 0, f is Z45 = 0, and g is Z55 = 0. For a = 0.45,
XM5 6= 0 in the first quadrant for M = 1, 2,or 3. (b) The (γ, β)-plane
for the five-gap problem with threshold a = 0.4. The curve labeled a is
X55 = 0, b is Z15 = 0, c is Z25 = 0, d is Z35 = 0, e is Z45 = 0, and f is
Z45 = 0. For a = 0.4, XM5 6= 0 in the first quadrant for M = 1, 2, 3 or

4.

For fixed β and γ À 1

A(β)P (γ) ∼ γ

(
0 cosh β
0 sinh β

)

so that (
fk(γ, β)
gk(γ, β)

)
∼ γk (sinhβ)k−1

(
cosh β
sinhβ

)
as γ →∞.

It follows that

XMN (γ, β) ∼ (
1
a
− 1)γN (sinhβ)N−1 > 0 as γ →∞ (24)

and
ZNM (γ, β) ∼ γN (sinh β)N−1

> 0 as γ →∞. (25)

Since

(A(0)P (γ))k =
(

1 γ
0 1

)k

=
(

1 kγ
0 1

)

we have (
fk(γ, 0)
gk(γ, 0)

)
=

(
1 + kγ

1

)
.

Hence
XMN (γ, 0) = γ∗ +

γ

a
(Na −M + 1)

and
ZMN (γ, 0) = −γ∗ − γ

a
(Na −M),

where
Na ≡ (1− a)N.

We conclude that

XMN (γ, 0)
{

> 0 if 0 ≤ γ < γM−1,N

< 0 if γ > γM−1,N
(26)
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and

ZMN (γ, 0)
{

< 0 if 0 ≤ γ < γMN

> 0 if γ > γMN
, (27)

where

γMN =





+∞ if M ≤ Na
1− 2a

M −Na
if M > Na

.

In Appendix A we show that

XMN (γ, β) ∼ (γ∗ + (
1
a
− 1)γ)(2 + γ)N−1

(
eβ

2

)N−1

> 0 as β →∞, (28)

ZMN (γ, β) ∼ (2 + γ)N−1(γ − γ∗)
(

eβ

2

)N−1

as β →∞, (29)

and

ZMN (γ∗, β) ∼ γ∗(2 + γ∗)N−2 e(N−3)β

2N−2
×





1 if M = N(
2− 1

a

)
< 0 if 2 ≤ M ≤ N − 1

(
1− 1

a

)
< 0 if M = 1

(30)
as β →∞.

¿From (23) and (25) we see that for each β > 0 there is at least one root of
ZMN (γ, β) = 0 in R+. Let γ = ζMN (β) denote the smallest such root. Generically
we would expect the graph of γ = ζMN (β) to consist of a number of disjoint arcs.
However, all of our numerical studies (cf. Figure 7) indicate that it is a smooth
curve and that there are no additional roots in the first quadrant. To simplify the
discussion we will assume that this is indeed the case.

We can say more about the set ZNN = 0 for large N . At the end of GN we have
(

a
−a

)
= ε1 − u∗NN (PA)N−1Pε,

where u∗NN (γ, β) is defined by

u∗NN =
1− a

εT
1 (PA)N−1Pε

.

Let

ε2 =
(

0
1

)
.

The equation
a = u∗NN εT

2 (PA)N−1Pε

establishes a relationship between γ and β. In particular

1
a
− 1 =

εT
1 (PA)N−1Pε

εT
2 (PA)N−1Pε

.

The eigenvalues of PA are

λj =
1
2

(
2 cosh β + γ sinhβ + (−1)j

√
(2 cosh β + γ sinhβ)2 − 4

)
for j = 1, 2
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and the corresponding eigenvalues are

vj =




λ2 − cosh β

sinhβ
1


 .

Note that λ1λ2 = 1 and 0 < λ1 < 1 < λ2. Write

Pε = c1v1 + c2v2,

where the cj depend on γ, β, and N . Then

(PA)N−1Pε = c1λ
N−1
1 v1 + c2λ

N−1
2 v2

and
1
a
− 1 =

c1λ
N−1
1 εT

1 v1 + c2λ
N−1
2 εT

1 v2

c1λ
N−1
1 εT

2 v1 + c2λ
N−1
2 εT

2 v2

.

Therefore
1
a
− 1 =

λ2 − cosh β

sinhβ
+O(ρN−1),

where ρ = λ1/λ2 < 1. It follows that

γNN (β) =
α2 − 1

α + coth β
+O(ρN−1),

where α =
1
a
− 1. In particular, the limiting position of γ = γNN (β) is given by

γ∞(β) = lim
N→∞

γNN (β) =
α2 − 1

α + coth β

and for each fixed β the convergence is exponential. Moreover,

lim
β→∞

γ∞(β) = γ∗.

Figure 8 is a schematic representation of the first quadrant of the (γ, β)−plane
as a finite rectangle. In this representation the upper and right hand sides of the
rectangle represent β = ∞ and γ = ∞ respectively. According to (23) and (27),
if M ≤ Na then ZMN < 0 on the left hand and lower boundaries of the rectangle,
and this is indicated by the dashed lines. From (25) we see that ZMN > 0 on the
right hand boundary and this is indicated with a heavy solid line. On the top of
the rectangle, in view of (27), ZMN < 0 for γ < γ∗ and > 0 for γ > γ∗. Finally,
from (28) we see that ZMN (γ∗, β) < 0 for β → ∞. The curve γ = ζMN (β) must
contain the points α = (γ∗,∞) and ω = (∞, 0) where ZMN changes sign and must
approach α from the right, as indicated in the figure. The part of the curve between
these points is drawn to agree with our numerical observations (cf. Figure 7).

Figures 9(a) and 9(b) are schematic representations of γ = ζMN (β) for Na <
M < N with the same conventions we have used in Figure 8. Here ω = (γMN , 0).
Since γ = ζMN (β) must still approach α from the right as β →∞, it must cross the
line γ = γ∗ in case ζMN (0) = γMN < γ∗ as shown in Figure 9(a). When this occurs,
corresponding to gap lengths γ > γ∗ which are sufficiently close to γ∗, there are at
least two values of β for which ZMN (γ, β) = 0. For M = N , we have γNN = γ∗/N .
Moreover, it follows from (28) that γ = ζMN (β) must approach α from the left.
This is shown in Figure 10.

If M ≤ Na + 1 then according to (22), (23), (24) and (26) XMN > 0 everywhere
on the boundary of the rectangle representing the first quadrant of the (γ, β)−plane.
Thus for any fixed γ > 0 we expect that XMN (γ, β) = 0 has an even number of
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β

γ
γ ω

α

γ=ζ ΜΝ (β)

∗

Figure 8. Schematic representation of the (γ, β)-plane for M ≤ N
showing ZMN = 0.

β

γ
γ

α

γ=ζ ΜΝ (β)

∗ω

(a)

β

γ
γ

α

γ=ζ ΜΝ (β)

∗ ω

(b)

Figure 9. Schematic representation of the (γ, β)-plane for Na < M <
N showing ZMN = 0. There are two cases: (a) if γMN < γ∗ then the
curve γ = ζMN (β) lies to the left of the line γ = γ∗ for all sufficiently
small β ≥ 0 and to the right of it for all sufficiently large values of β.
(b) if γMN > γ∗ then the curve γ = ζMN (β) lies to the right of the line
γ = γ∗ for all sufficiently small β ≥ 0 and for all sufficiently large values
of β.

roots. In fact our numerical studies show that there are no roots in this case. On
the other hand, for M > Na + 1, it follows from (26) that XMN (γ, 0) < 0 between
α = (γM−1,N , 0) and ω = (0,∞). In particular, there is a least positive root
β = ξM−1,N (γ) whose graph joins α to ω. Again our numerical studies indicate
that this graph is a smooth curve joining α to ω as shown in Figure 11.
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β

γ
γ

α

∗ω

γ=ζ ΝΝ (β)

Figure 10. Schematic representation of the (γ, β)-plane for M = N
showing ZNN = 0.

β

γ
γ

α

∗α ω

β=ξ Μ−1,Ν
(γ)

Figure 11. Schematic of the (γ, β) plane for M > Na + 1, showing
XMN = 0.

To summarize:
• If Na + 1 < M ≤ N then there is a standing wave solution which crosses

threshold in GM for every point (β, γ) between the curves XMN (β, γ) = 0
and ZMN (β, γ) = 0.

• If Na < M < Na + 1 then γMN < +∞ and there is a standing wave solution
which crosses threshold in GM for every point (β, γ) to the right of the curve
ZMN (β, γ) = 0.

• If 1 ≤ M < Na then γMN = +∞ and there is a standing wave solution
which crosses threshold in GM for every point (β, γ) to the right of the curve
ZMN (β, γ) = 0.

Figure 7(a) shows the numerically computed curves XMN = 0 and ZMN = 0 for
N = 5 gaps with a = 0.45. Here Na = 2.75 so that γM5 < ∞ only for M = 3, 4, and
5. Note that the picture changes when a is varied. E. g., if a = 0.4 then γM5 < ∞
only for M = 4 and 5 so that there are no curves XM5 = 0 for M ≤ 4 as shown in
Figure 7(b).
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6. Monotonicity. The initial slope u∗MN (γ, β) which yields a monotone standing
wave solution crossing threshold in the M th gap in an N gap configuration has
certain monotonicity properties with respect to the indices M and N . Specifically,
we have

u∗1N > u∗2N > · · · > u∗NN (31)
and

u∗MN > u∗MN+1. (32)
An immediate consequence of (31) and (32) is

u∗MN > u∗M+1,N+1. (33)

According to (14) with k = 1

u∗MN =
gN−M

fN−1 + (1 + γ)gN−1

and (31) is an immediate consequence of the monotonicity of the gk with respect
to the index (12). To prove (32) we use (14) with k = M to write (32) in the form

gN−M

gM−1(fN−M + γgN−M ) + fM−1gN−M
>

gN+1−M

gM−1(fN+1−M + γgN+1−M ) + fM−1gN+1−M
.

Thus (32) is equivalent to

QMN ≡ gN−MfN+1−M − gN+1−MfN−M > 0. (34)

If we write

(AP )N−M =
(

a11 a12

a21 a22

)

then
fN−M = a11 + a12 and gN−M = a21 + a22.

Note that the aij > 0. Since

(AP )N−M+1 =
(

a11 cosh β + a12 sinhβ a11(sinhβ + γ cosh β) + a12(coshβ + γ sinh β)
a21 cosh β + a22 sinhβ a21(sinhβ + γ cosh β) + a22(coshβ + γ sinh β)

)

it follows that

fN−M+1 = a11(sinh β + (1 + γ) cosh β) + a12(coshβ + (1 + γ) sinh β)

and

gN−M+1 = a21(sinhβ + (1 + γ) cosh β) + a22(coshβ + (1 + γ) sinh β).

Substituting in (34) yields

QMN = γ(coshβ − sinhβ) det
{
(AP )N−M

}
.

However
det

{
(AP )N−M

}
= {detAP}N−M

and

detAP =
∣∣∣∣

coshβ sinh β + γ cosh β
sinhβ cosh β + γ sinh β

∣∣∣∣ = cosh2 β − sinh2 β = 1.

Therefore
QMN = γ(coshβ − sinh β) > 0.

In Figure 7 the curves ZMN = 0 lie to the right of the curves ZM+1,N = 0. We
show here that this monotonicity is a general property. In particular, we show that

ZMN (γ, β) ≥ 0 implies ZM+1,N (γ, β) > 0 (35)
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whenever both are defined. Using (15) we can write the condition ZMN ≥ 0 in the
form

fN−1 + (1 + γ)gN−1 ≥ 1
a
fN−MgM−1. (36)

Similarly

ZM+1,N = fN−1 + (1 + γ)gN−1 − 1
a
fN−M−1gM

so that (36) implies that

ZM+1,N ≥ 1
a

(fN−MgM−1 − fN−M−1gM ) .

Therefore the sign of ZM+1,N is determined by the sign of

QM+1,N ≡ fN−MgM−1 − fN−M−1gM .

By (11)

QM+1,N = εT
1 (AP )N−M εεT

2 (AP )M−1ε− εT
1 (AP )N−M−1εεT

2 (AP )M ε

which we rewrite as

QM+1,N = εT
1 (AP )N−M−1R (AP )M−1ε,

where

R = APεεT
2 − εεT

2 AP =
( − sinhβ sinhβ + γ(coshβ − sinhβ
− sinhβ sinhβ

)
.

It is not difficult to verify that

APRAP = R. (37)

Suppose first that M ≤ N/2. Then it follows from (37) that

QM+1,N = εT
1 (AP )N−2MRε = γ(coshβ − sinhβ)a11 > 0,

where (AP )N−2M = (aij) and all of the aij are positive..
If M > N/2 we have

QM+!,N = εT
1 R(AP )2M−N ε,

which, in view of (37), we rewrite as

QM+1,N = εT
1 {(AP )2M−N}−1Rε. (38)

Let (AP )2M−N = (bij), where all of the bij are positive. Therefore, since
det (AP )2M−N = 1 and

(AP )−1 =
(

b22 −b21

−b12 b11

)
,

it follows from (38) that

QM+1,N = γ(coshβ − sinhβ)b22 > 0.

This completes the proof of (35).
In a similar manner we can show that

XMN (γ, β) ≥ 0 implies that XM−1,N (γ, β) > 0.

We omit the details.
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7. Solution crossing threshold in an active region. We now consider the
construction of monotone standing wave solutions which cross threshold in the M th

active region in an N gap configuration, where M ∈ {1, 2, ..., N − 1}. This con-
struction is considerably more complicated than the corresponding construction for
solutions which cross threshold in a gap since now we have to deal explicitly with
the nonlinearity of the problem.

To construct a standing wave solution which crosses threshold in the M th active
region AM , we fix a δ ∈ [0, 1], integrate the super-threshold equation u′′−u+1 = 0
a distance δβ until u reaches the value a, and then integrate the sub-threshold
equation u′′−u = 0 a distance β(1− δ) to complete the traversal of AM . This is, of
course, not possible for every choice of γ, β, and δ, but we will derive the admissible
(γ, β)-set for any given δ. We will use the notation and conventions of Sections 3
and 4 .

If the initial slope is −v∗, then at the end of the gap GM we have

UM−1 = ε1 − v∗P (AP )M−1ε,

where A = A(β) and P = P (γ). Assuming that the point UM−1 lies between the
stable manifold Σ2 and the line u = a, follow the trajectory of u′′ − u + 1 = 0 for a
distance δβ to obtain

(
a
u′

)
= ε1 − v∗A(δβ)P (AP )M−1ε. (39)

In particular, γ, β, δ, and v∗ are constrained by the condition

a = 1− v∗εT
1 A(δβ)P (AP )M−1ε. (40)

In addition, δ is constrained by the condition

0 ≤ δ ≤ 1. (41)

Continue by integrating the sub-threshold equation u′′−u = 0 for a distance β(1−δ)
to obtain

VM = A((1− δ)β)ε1 − v∗A((1− δ)β)A(δβ)P (AP )M−1ε.

Finally proceeding as in Section 3, we arrive at

0 = εT (PA)N−M−1PA((1− δ)β)ε1 (42)

−v∗εT P (AP )N−M−1A((1− δ)β)A(δβ)P (AP )M−1ε.

(40) and (42) yield two expressions for the critical slope −v∗, and since they
must agree we led to the condition

VMN (γ, β; δ) ≡ (1− a)
{
εT (PA)N−M−1PA((1− δ)β)A(δβ)P (AP )M−1ε

}−
{
εT (PA)N−M−1PA((1− δ)β)ε1

}{
εT
1 A(δβ)P (AP )M−1ε

}
= 0

for the existence of a heteroclinic orbit which crosses threshold in the M th active
region. Since A(0) = I,

VMN (γ, β; 0) = −aZMN (γ, β)

and
VMN (γ, β; 1) = −aXM+1,N (γ, b),

where XM+1,N and ZMN are defined in Section 4.
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For each fixed δ ∈ [0, 1] we can compute the set VMN (γ, β; δ) = 0 in the (γ, β)-
plane. Several examples are shown in Figure 12. If

1 ≤ M ≤ Na ≡ (1− a)N

then for each
δ ∈ [0, a)

the set VMN (γ, β; δ) = 0 is a smooth curve in the (γ, β)-plane of the form γ = Γ(β; δ)
with asymptotes at β = 0 and β = β∗(δ), where β∗ is the unique positive solution
to

tanh((1− δ)β) tanh(δβ) =
a− δ

1− a− δ
. (43)

These curves fill out the region in the (γ, β)-plane to the right of ZMN (γ, β) =

−1
a
VMN (γ, β; 0) = 0. The set VMN (γ, β; δ) = 0 is empty for δ ≥ a. An example is

given in Figure 12(a).

Figure 12. The (γ, β)-plane for the three-gap problem with a = 0.45.
(a) The curves V13(γ, β; δ) = 0 are shown (from left to right) for δ =
0, 0.1, ..., 0.4. Here Na = 1.65 > M = 1. (b) The curves V33(γ, β; δ) =
0 are shown (from left to right) for δ = 0.440, 0.441, ..., 0.445. Here
Na + 1 = 2.65 < M = 3. Note that for the range of γ in this figure
V33(γ, β; 0.445) = 0 shows two components.

The formula (43) is derived by considering the asymptotic behavior of VMN for
γ À 1. Observe that

(PA)N−M−1 ∼ γN−M−1(sinh(β))N−M−2

(
sinh(β) cosh(β)

0 0

)
,

(AP )M−1 ∼ γM−1(sinh(β))M−2

(
0 cosh(β)
0 sinh(β)

)
,

and

P ∼ γ

(
0 1
0 0

)

as γ →∞ . Therefore

VMN (γ, β; δ) ∼ γN (sinh(l))N−2{(1− a) cosh((1− δ)β) sinh(δβ) (44)

−a sinh((1− δ)β) cosh(δβ)}
as γ →∞. It follows from (44) that VMN ∼ 0 as γ →∞ if either γN (sinh(l))N−2 →
0 as γ →∞ or (43) has a solution β = β∗ > 0.
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For
Na < M ≤ N

the situation is somewhat different because in addition to the curve ZMN = 0 there
is also the curve XM+1,N = 0, and the sets VMN = 0 fill out the region between
them. For each

δ ∈ [a, 1]

the set VMN (γ, β; δ) = 0 is a curve starting at (γMN , 0) and approximating
XM+1,N (γ, β) = 0 as γ →∞. For each

δ ∈ (0, a)

the set VMN (γ, β; δ) = 0 is a curve starting at (γMN , 0) which asymptotes at β =
β∗(δ) for γ → ∞. For δ very close to a this curve stays close to XM+1,N = 0 for
very large value of γ before switching to it’s asymptotic behavior. An example is
given in Figure 12 (b). (Our numerical evidence is not sufficiently sharp to rule
out the possibility that for δ near a the set VMN = 0 possesses two components;
one which approximates XM+1,N = 0 and another which asymptotes at β = 0 and
β = β∗.)

We can also use (40) and (41) to study the relationship between the active region
length β and the critical initial slope −v∗. Using (11) and the fact that cosh(l)2 −
sinh(l)2 = 1 we rewrite (40) in the form

1− a

v
− gM−1 sinh(δβ) = (fM−1 + γgM−1)

√
1 + sinh(δβ)2,

where we have written v in place of v∗. This is a quadratic equation for sinh(δβ)
which we solve to obtain

δ∗(γ, β, v) ≡ 1
β

arcsin h

{
−(1− a)gM−1 + (fM−1 + γgM−1)

√
(1− a)2 − v2pM−1

vpM−1

}
,

where

pM−1 = pM−1(γ, β) ≡ (fM−1(γ, β) + γgM−1(γ, β))2 − gM−1(γ, β)2.

In view of the constraint (41) we define

δ = δ(γ, β, v) ≡




0 if δ∗(γ, β, v) < 0
δ∗(γ, β, v) if 0 ≤ δ∗(γ, β, v) ≤ 1
1 if δ∗(γ, β, v) > 1

. (45)

Using the formula (45) in (42) we obtain a relationship between γ, β, and the
critical initial slope −v. For each fixed γ this is an implicit relationship between
v and the active region length β , and we can plot the resulting curves in the
(v, β)-plane. Figures 3 and 5 show the results of this computation for a two-gap
configuration. Figure 13 shows some results for the case of three gaps. Note that by
using (45) we account for threshold crossings not only in AM , but also in GM when
δ = 0 and in GM+1 when δ = 1. Thus the curves which we generate in this manner
show the bifurcations which occur when the threshold is crossed at the intersection
of an active and a passive region.

There remains to be considered the case in which the standing wave solution
crosses threshold in the terminal active region AN . At the end of the N th gap GN ,
since threshold has not yet been crossed, we have

UN−1 = ε1 − uP (AP )N−1ε. (46)
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Figure 13. The (u, β)-plane for the three-gap problem with threshold
a = 0.45 and gap length γ = 0.5. Here −u is the initial slope and β is
the length of the intervals in the active region. For points (u, β) on the
curves labeled a, c, e the corresponding standing wave solution crosses
threshold in the gaps G1, G2, G3 respectively. For points on the curves
labeled b, d the corresponding standing wave solutions cross threshold
in the active regions A2, A1 respectively. There are two bifurcation
points: one at the intersection of the curves a and b, and the other at
the intersection of the curves d and e.

We require that this point lies on the right-most branch

Σ2 : (u− 1)2 − u′2 = 1− 2a for − a ≤ u′ ≤ 0 (47)

of the stable manifold of (0, 0). Substituting from (46) in (47) yields

v∗2N+1

{
(fN−1 + γgN−1)2 − g2

N−1

}
= 1− 2a.

To satisfy the condition u′ ≥ −a we must have

v∗N+1,M ≤ a

gN−1

which reduces to

a2(fN−1 + γgN−1)2 − (1− a)2g2
N−1,M ≥ 0.

Thus, in particular, the condition for the existence of a heteroclinic orbit which
crosses threshold in the terminal active region AM is

a(fN−1 + γgN−1)− (1− a)gN−1 = aZNN (γ, β) ≥ 0.

8. Stability. We now investigate the stability properties of the standing wave so-
lutions which we have constructed. In particular, we prove that the standing waves
which cross threshold in a gap are stable, while those which cross in an active
region are unstable. If threshold is crossed at the intersection of a gap and an ac-
tive region, then there is one-sided stability. The proofs of these results are based
on an extension to discontinuous parabolic operators of the standard comparison
principle and the stabilization theorem of Aronson&Weinberger [1, 2]. In order to
apply these results we will construct suitable stationary sub- and super-solutions in
neighborhoods of our monotone standing waves.
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We are concerned with the parabolic differential operator

Nu ≡ ut − uxx − I(x) {H(u− a)− u} ,

where I(x) is the indicator function on the union of the active regions. N is discon-
tinuous at the intersections of the active and passive regions as well as on any curve
x = c(t) where u(c(t), t) = a. We will assume, in general, that N is discontinuous
on a finite collection of curves C ={c1(t), ..., cm(t)} which are nowhere horizontal.

Comparison Theorem. Let ϕ(x, t) = u(x, t) − v(x, t), where u and v are
C2,1((R\C)×R+) ∩ C(R×R+) functions. If

Nϕ ≤ 0 in (R\C)×R+

ϕ(·, 0) ≤ 0 in R

ϕx(cj(t)−, t) ≤ ϕx(cj(t)+, t) for j = 1, ..., m and t ∈ R+.

then
ϕ(x, t) ≤ 0 throughout R×R+.

An important consequence of the Comparison Theorem concerns the behavior of
solutions to the transient problem when the initial datum is a stationary sub- or
super-solution. A function U is said to be a sub-solution for N if

NU ≤ 0 in (R\C)×R+ (48)

Ux(cj(t)−, t) ≤ Ux(cj(t)+, t) for j = 1, ...,m and t ∈ R+,

and U is said to be a super-solution forN if (48) holds with the inequalities reversed.
If U is a sub-solution and v is a solution with U(·, 0) ≤ v(·, 0) then, according to the
Comparison Theorem, U(x, t) ≤ v(x, t) everywhere. Moreover, we have the next
theorem.

Convergence Theorem. Let U(x) be a time-independent sub-solution (super-
solution) for N and let u(x, t; U) be the solution of the transient problem

Nu = 0 in (R\C)×R+

u(·, 0) = U in R.

Then u(x, t;U) is a nondecreasing (nonincreasing) function of t which for t → ∞
approaches the smallest (largest) steady state solution U∗(x) of Nu = 0 such that

U∗(x) ≥ (≤)U(x) for all x ∈ R.

Proofs of these results are essentially given by Pauwelussen [12]. In order to
apply these results we prove the existence of suitable sub- and super-solutions in
the neighborhood of each standing wave solution. In particular, we show that a
standing wave solution which crosses threshold in a gap is stable since there exist
sub-solutions below and super-solutions above it. For a standing wave solution
W (x) which crosses threshold in an active region the situation is more complicated
since the transition from super- to sub-threshold reverses relative positions. Thus
the sub- and super-solutions which we construct straddle the standing wave rather
than being strictly above or below it. Suppose W crosses threshold in the M th active
region. We construct steady super-solutions W+ and sub-solutions W− arbitrarily
close to W which satisfy W+ < W < W−on (0, xM ). By the Convergence Theorem
u(x, t;W+) (u(x, t;W−)) converges to the largest (smallest) steady state solution
S satisfying S < W (S > W ). Thus W is unstable.
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Moreover, if we consider a transient problem whose initial datum lies between
two standing waves, one crossing threshold in AM−1 and the other crossing in AM ,
then it follows from the Comparison Theorem and the Convergence Theorm that
the solution to that problem will evolve in time to a standing wave which crosses
threshold in GM . This is illustrated in Figure 14.

Figure 14. (a) The three standing wave solutions corresponding to the
two-gap case (a = 0.2, β = γ = 5.). Solid, dashed and dotted lines rep-
resent the standing wave for which the solution crosses threshold within
the first gap, the first active region, and the second gap, respectively.
(b) Transient simulation for initial condition: u0(x) = usw(x)+ ε, where
usw(x) is the standing wave for which the solution drops below threshold
within the first active region in (a) and ε = −0.01. The final distribu-
tion is shown in a dotted line and is identical to the constructed standing
wave shown in (a).

The standing wave which crosses threshold in the M th gap for a specific (γ, β) is
given by (16), where u∗MN is the initial speed determined by the condition that the
endpoint of the phase curve for the standing wave lies on the stable manifold Σ1. If
we omit this condition and write (16) for arbitrary values of u, then it is clear that
both u(x) and u′(x) decreases as u increases. If u1 < u∗MN < u2, let

UN−1(uj) =
(

Uj

U ′
j

)
and UN−1(u∗MN ) =

(
U∗
U
′
∗

)

then

U1 > U∗ > U2,

U ′
1 > U ′

∗ > U ′
2

and
q1 > 0 > q2,

where qj = Uj + U ′
j with U∗ + U ′

∗ = 0 by construction. It follows that the phase
point (U1, U

′
1) lies above Σ1 while the point (U2, U

′
2) lies below it, as shown in Figure

15. We construct a sub-solution below the standing wave by introducing an upward
jump in the derivative at x = yN−1 by setting

U ′
2(yN−1+) = −U2 > U ′

2(yN−1−).
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Similarly, we construct a super-solution above the standing wave by introducing a

O P

Σ

Σ

2

3

W

Σ Γ

Γ

1
1

3

a

−a

W

W

1

2

−u

−u
−u

1

2
*

Figure 15. Construction of sub- and super- solutions close to a stand-
ing wave W which crosses threshold in the gap G2 in the two-gap prob-
lem. W1 is a super-solution which lies above W and W2 is a sub-solution
that lies below W .

downward jump in derivative at x = yN−1 by setting

U ′
1(yN−1+) = −U1 < U ′

1(yN−1−).

Suppose now that threshold is reached in the M th active region AM at y = xM+δ,
where δ ∈ (0, β). Then

(
a

u′(y)

)
= ε1 − uA(δ)P (AP )M−1ε

and δ = δ(u) is determined by

a = 1− uεT
1 A(δ)P (AP )M−1ε.

Differentiating with respect to u and using the fact that

d

dδ
A(δ) =

(
0 1
1 0

)
A(δ)

yields
dδ

du
= − εT

1 A(δ)P (AP )M−1ε

uεT
2 A(δ)P (AP )M−1ε

< 0. (49)

Set b(u) = u′(xM + δ(u)). Then

b(u) = −uεT
2 A(δ)P (AP )M−1ε

and
db

du
= −εT

2 A(δ)P (AP )M−1ε− u
dδ

du
εT
1 A(δ)P (AP )M−1ε.

In view of (49) this becomes

db

du
=

{
εT
1 A(δ)P (AP )M−1ε

}2 − {
εT
2 A(δ)P (AP )M−1ε

}2

εT
2 A(δ)P (AP )M−1ε

.

The sign of db/du is determined by the sign of

(εT
1 − εT

2 )A(δ)P (AP )M−1ε= (cosh(β)− sinh(β))(fM−1 − gM−1 + γgM−1).
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Therefore
db

du
> 0. (50)

To complete the traversal of AM we apply A(β − δ) to obtain
(

vM (u)
v′M (u)

)
= A(β − δ(u))

(
a

b(u)

)

Suppose 0 < u1 < u∗ = v∗MN < u2. Then
(

vM (u1)
v′M (u1)

)
=

(
a cosh(β − δ(u1)) + b(u1) sinh(β − δ(u1))
a sinh(β − δ(u1)) + b(u1) cosh(β − δ(u1))

)

and by Taylor’s expansion(
vM (u1)
v′M (u1)

)
=

(
vM (u∗)
v′M (u∗)

)
+ (u∗ − u1)R + · · ·,

where

R =
(

δ′(u∗){a sinh(β − δ(u∗)) + b(u∗) cosh(β − δ(u∗))} − b′(u∗) sinh(β − δ(u∗))
δ′(u∗){a cosh(β − δ(u∗)) + b(u∗) sinh(β − δ(u∗))} − b′(u∗) cosh(β − δ(u∗))

)
.

In view of (49) and (50), both components of R are negative, so that

vM (u1) < vM (u∗) and v′M (u1) < v′M (u∗) (51)

for sufficiently large u1 < u∗. Similarly

vM (u2) > vM (u∗) and v′M (u2) > v′M (u∗) (52)

for sufficiently small u2 > u∗.
At the end of the last gap GN we have

UN−1(u) =
(

uN−1(u)
u′N−1(u)

)
= P (AP )N−M−1

(
vM (u)
v′M (u)

)
.

The elements of the matrix P (AP )N−M−1 are all strictly positive and independent
of u. Therefore it follows from (51 and (52) that

uN−1(u1) < uN−1(u∗) and u′N−1(u1) < u′N−1(u∗)

and
uN−1(u2) > uN−1(u∗) and u′N−1(u2) > u′N−1(u∗).

Moreover
q(u1) < q(u∗) = 0 < q(u2).

Thus the phase point UN−1(u1) is in the fourth quadrant below Σ1 and the phase
point UN−1(u2) is in the fourth quadrant above Σ1 provided that u1 and u2 are
sufficiently close to u∗ with u1 < u∗ < u2.

Let W (x; u) denote the steady state solution so far constructed for x ∈ (−∞, xN ),
where W (x; u∗) is the standing wave solution which crosses threshold in AM . We
extend the domain of W1(x) = W (x;u1) by setting

W ′
1(xN+) = −W1(xN ) > W ′

1(xN−)

and continuing the integration along the stable manifold Σ1. Thus W1(x) is a
steady sub-solution for the operator N . According to the Convergence Theorem,
u(x.t;W1) converges with t →∞ to the smallest steady state solution S such that
W1(x) ≤ S(x). Since u1 < u∗ we have

W1(x) > W (x; u∗) for x ∈ (0,∈ xM )
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and it follows that
W (x;u∗) < S(x) for all x.

In a similar manner if we extend W2 by setting

W ′
2(xN+) = −W2(xN ) < W ′

2(xN−)

then W2(x) is a steady super-solution, and u(x, t;W2) converges down as t →∞ to
the largest steady state solution T (x) such that

W (x; u∗) > T (x) for all x

(cf. Figure 16).

O P

Σ

Σ

2

3

+

Γ

Γ

1

3

W

Σ
1

a

−u

−u
−u

1

2

*

−a

W

W

1

2

Figure 16. Construction of sub- and super- solutions close to a stand-
ing wave W which crosses threshold in the active region A1 in the two-
gap problem. W1 is a sub-solution which lies partially above W and W2

is a super-solution which lies partially below W .

Bifurcations occur when threshold is crossed at the intersection of an active and
a passive region. Suppose, for example, that the standing wave crosses threshold
at the intersection of GM and AM . Then, as above, for u2 > u∗ we can construct
sub-solutions strictly below the standing wave, and for u1 < u∗ sub-solutions which
straddle the wave but which lie partially above it (cf. Figure 16). Thus the standing
wave is stable from below and unstable from above. A crossing of threshold at the
intersection of AM and GM+1 can only occur for M > Na + 1 . The corresponding
standing wave solution is stable from above and unstable from below.

To more fully delineate the domain where blockage can occur we need two more
observations. The first is that any monotone standing wave solution which crosses
threshold in the terminal active region AN is unstable. The second is the existence
of a “universal” sub-solution below any of the standing wave solutions. A transient
solution whose initial datum lies below the unstable steady state wave which crosses
in AM and above the universal sub-solution will be blocked. If the initial datum
lies above the unstable steady state the solution will propagate.

At the end of the N th gap

UN−1(u) =
(

uN−1(u)
u′N−1(u)

)
=

(
1− u (fN−1 + γgN−1)

ugN−1

)
, (53)

where (
uN−1(u∗)
u′N−1(u∗)

)
∈ Σ2. (54)
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If u1 < u∗ < u2 then

uN−1(u1) > uN−1(u∗) > uN−1(u2) and u′N−1(u1) > u′N−1(u∗) > u′N−1(u2). (55)

Let
q(w) ≡ (1− uN−1(w))2 − u′2N−1(w),

where, in view of (54), q(u∗) = 1− 2a and, in view of (53),

q(u) = u2
{

(fN−1 + γgN−1)
2 − g2

N−1

}
.

Note that

(fN−1 + γgN−1)
2 − g2

N−1 = (fN−1 + γgN−1 + gN−1) (fN−1 − gN−1 + γgN−1) > 0.

Therefore q(u) is a strictly increasing function and

q(u1) < q(u∗) = 1− 2a < q(u2).

Since q(u1) < 1 − 2a the phase point UN−1(u1) lies between Σ2 and Σ3. We
construct a sub-solution by setting

u′N−1(u1) |xN+ = −
√
{(1− uN−1(u1))2 − 1 + 2a} > u′N−1(u1) |xN− .

In view of (55) this sub-solution lies above the standing wave. In a similar manner
we can construct super-solutions below the standing wave. An example is shown in
Figure 17. Thus any standing wave solution which crosses threshold in the terminal
active region AN is unstable.
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Figure 17. Construction of sub- and super- solutions close to a stand-
ing wave W which crosses threshold in the terminal active region A2 in
the two-gap problem. W1 is a sub-solution which lies above W and W2

is a super-solution which lies below W .

To construct the universal sub-solution we first consider the case γ ≥ 1
a
− 1.

The locus of endpoints of phase curves in the first passive region is the line u =
1 + (1 + γ)u′ which intersects the line u = 0 at or above the level u′ = −a. This
means that the phase curve reaches u = 0 before the end of the first gap. The
sub-solution consists of the this phase curve cut off at u = 0 and continued as u ≡ 0

(cf. Figure 18(a)). For γ∗ < γ <
1
a
− 1 the phase curve for the first gap reaches the

level u′ = −a for some u ∈ (0, a). Then integration is then continued into A1 where
depending on the magnitude of β it may reaches u = 0. If it does we continue it as
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u ≡ 0. If not then we continue into G2 where it must reach u = 0 (cf. Figures 18(b)
and 18(c)).

Figure 18. Construction of the “universal” sub-solution for (a) γ ≥
1
a
− 1, (b) and (c) γ∗ < γ < 1

a
− 1.
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9. Discussion. We have considered a problem of signal propagation in a non-
homogeneous medium. Specifically, we consider the real line partitioned into a
passive region P consisting of N open intervals each of length γ, and an active
region A consisting of N −1 open intervals each of length β separating the intervals
of P together with two semi-infinite intervals surrounding P (cf. Figure 1). We
have studied the evolution of a quantity u(x, t) that satisfies the diffusion equation

ut = uxx

for x ∈ P and the McKean-Nagumo reaction-diffusion equation

ut = uxx + H(u− a)− u

for x ∈ A. If P = ∅ then, for all but a codimension-1 manifold of initial data,
solutions to the initial value problem for the McKean-Nagumo equation approach
either the stable equilibrium u ≡ 0 or u ≡ 1 as t → ∞ [10]. If P 6= ∅ and γ is
sufficiently small then the situation is similar to the case P = ∅, i.e., most solutions
either die out (tend to 0) or propagate (tend to 1). However for appropriate values of
γ and β in the first quadrant of the (γ, β)-plane (roughly speaking, for γ sufficiently
large, cf. Figures 6 and 11) there exist stable and unstable standing wave solutions
which induce a new class of asymptotics, namely, non-trivial stationary patterns.
Thus for appropriate initial data the solution to the initial value problem does not
tend asymptotically to one of the constant equilibria u ≡ 0 or u ≡ 1, but instead
tends to one of the standing waves. In particular, for the standing waves u → 0 as
x →∞ so there is no transmission across the passive region P.

An interesting extension of the present work would be to systems of equations
involving a recovery variable, e.g., the system

vt = vxx + I(x) {H(v − a)− v − εw} (56)

wt = I(x)(bv − cw),

where I(x) is the indicator function of the active regions, b and c are positive
constants, and ε is a non-negative parameter. For ε = 0 the system (56) reduces
to the McKean-Nagumo equation, while for ε = 1 and I(x) ≡ 1 the system (56) is
the FitzHugh-Nagumo-McKean system studied by Rinzel & Keller [13] and others.
Clearly for ε > 0 the presence of the recovery variable w will facilitate wave block.
For ε ¿ 1 one can analyze standing waves and pulses for (56) in the spirit of what
we have done here for the McKean-Nagumo equation. There is however one major
difference. In the single equation case we were able to use comparison methods to
establish nonlinear stability and instability properties of standing wave solutions.
Comparison methods are not, in general, applicable to systems such as (56) so
that one usually has to settle for a linearized stability analysis. Nevertheless we
conjecture that the McKean/Moll analysis of the gap-free case can be extended
to the case in which there are gaps for sufficiently small ε. For ε = 1 there are
various phenomena other than wave-block, e.g., wave reversal [14]. Thus it would
be interesting to study the continuation of the solution set to (56) with respect to
the parameter ε.
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# GM29123, and by the Minnesota Supercomputing Institute. NVM was also
supported in part by NSF-BES # 0331324.
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11. Appendix. Proof of (28) , (29) and (30). Write

AP =
eβ

2
R +

e−β

2
S,

where

R =

�
1 1 + γ
1 1 + γ

�
and S =

�
1 −1 + γ
−1 1− γ

�
,

and

AP =
eβ

2
U +

e−β

2
V,

where

U =

�
1 + γ 1 + γ

1 1

�
and V =

�
1− γ −1 + γ
−1 1

�
.

Note that for any positive integer k

Rkε = (2 + γ)k−1Rε = (2 + γ)kε (57)

and

εT Uk = (2 + γ)k−1εT U = (2 + γ)kεT . (58)

Then for M ≥ 2

(AP )M−1ε =
e(M−1)β

2M−1
(2 + γ)M−1ε +

e(M−3)β

2M−1
BM−1ε + · · ·,

where

BM−1 =

M−2X
j=0

RM−2−jSRj ,

and for M ≤ N − 1

εT (PA)N−M =
e(N−M)β

2N−M
εT (2 + γ)N−M +

e(N−M−2)β

2M−1
εT DN−M + · · ·,

where

DN−M =

N−M−1X
j=0

UN−M−1−jV U j .

If M = 1 then B0 = 0 and D0 = 0 when M = N.

Since �
fk(γ, β)
gk(γ, β)

�
= (AP )kε ∼ (2 + γ)k

�
eβ

2

�k

ε as β →∞.

it follows that

XMN = (
1

a
− 1)gM−1(fN−M + γgN−M )− fM−1gN−M

∼ (2 + γ)N−1

�
γ∗ + γ(

1

a
− 1)

�
e(N−1)β

2N−1
as β →∞.

Thus (28) holds.
To prove (29) we note that in view of (11) and (13) we can write (21) in the form.

ZMN = εT (PA)N−MQ(AP )M−1ε,

where

Q =

 
1 γ

0 1− 1

a

!
.
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Hence

ZMN =
e(N−1)β

2N−1
(2 + γ)N−1εT Qε

+
e(N−3)β

2N−1
{(2 + γ)N−MδεT QBM−1ε + (2 + γ)M−1εT DN−MQε}+ · · ·

Since
εT Qε = γ − γ∗

we conclude that

ZMN ∼ e(N−1)β

2N−1
(2 + γ)N−1(γ − γ∗) as β →∞ for γ 6= γ∗.

For γ = γ∗ and 2 ≤ M ≤ N − 2

ZMN ∼ e(N−3)β

2N−1
{(2 + γ∗)N−M εT QBM−1ε + (2 + γ∗)M−1εT DN−MQε}, (59)

with

Q =

 
1 γ∗

0 1− 1

a

!
.

Write

BM−1 = RM−2S + SRM−2 +

M−3X
j=1

RM−2−jSRj .

Then, in view of (57), we obtain

BM−1ε = (M − 2)(2 + γ∗)M−3RSε+(2 + γ∗)M−2Sε.

Now
εT QSε = 2γ∗ and εT QRSε = 0

so that
(2 + γ∗)N−M εT QBM−1ε = 2γ∗(2 + γ∗)N−2. (60)

An analogous computation using (58) yields

(2 + γ∗)M−1εT DN−MQε = −2γ∗(
1

a
− 1)(2 + γ∗)N−2. (61)

Therefore we obtain (30) after substituting (60) and (61) into (59), and recalling that
B0 = D0 = 0.
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